Artificial intelligence in predicting bladder cancer outcome: a comparison of neuro-fuzzy modeling and artificial neural networks.

نویسندگان

  • James W F Catto
  • Derek A Linkens
  • Maysam F Abbod
  • Minyou Chen
  • Julian L Burton
  • Kenneth M Feeley
  • Freddie C Hamdy
چکیده

PURPOSE New techniques for the prediction of tumor behavior are needed, because statistical analysis has a poor accuracy and is not applicable to the individual. Artificial intelligence (AI) may provide these suitable methods. Whereas artificial neural networks (ANN), the best-studied form of AI, have been used successfully, its hidden networks remain an obstacle to its acceptance. Neuro-fuzzy modeling (NFM), another AI method, has a transparent functional layer and is without many of the drawbacks of ANN. We have compared the predictive accuracies of NFM, ANN, and traditional statistical methods, for the behavior of bladder cancer. EXPERIMENTAL DESIGN Experimental molecular biomarkers, including p53 and the mismatch repair proteins, and conventional clinicopathological data were studied in a cohort of 109 patients with bladder cancer. For all three of the methods, models were produced to predict the presence and timing of a tumor relapse. RESULTS Both methods of AI predicted relapse with an accuracy ranging from 88% to 95%. This was superior to statistical methods (71-77%; P < 0.0006). NFM appeared better than ANN at predicting the timing of relapse (P = 0.073). CONCLUSIONS The use of AI can accurately predict cancer behavior. NFM has a similar or superior predictive accuracy to ANN. However, unlike the impenetrable "black-box" of a neural network, the rules of NFM are transparent, enabling validation from clinical knowledge and the manipulation of input variables to allow exploratory predictions. This technique could be used widely in a variety of areas of medicine.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of streamflow- suspended sediment load relationship by adaptive neuro-fuzzy and artificial neural network approaches (Case study: Dalaki River, Iran)

Modeling of stream flow–suspended sediment relationship is one of the most studied topics in hydrology due to itsessential application to water resources management. Recently, artificial intelligence has gained much popularity owing toits application in calibrating the nonlinear relationships inherent in the stream flow–suspended sediment relationship. Thisstudy made us of adaptive neuro-fuzzy ...

متن کامل

Artificial intelligence-based approaches for multi-station modelling of dissolve oxygen in river

ABSTRACT: In this study, adaptive neuro-fuzzy inference system, and feed forward neural network as two artificial intelligence-based models along with conventional multiple linear regression model were used to predict the multi-station modelling of dissolve oxygen concentration at the downstream of Mathura City in India. The data used are dissolved oxygen, pH, biological oxygen demand and water...

متن کامل

Comparing diagnosis of depression in depressed patients by EEG, based on two algorithms :Artificial Nerve Networks and Neuro-Fuzy Networks

Background and aims: Depression disorder is one of the most common diseases, but the diagnosis is widely complicated and controversial because of interventions, overlapping and confusing nature of the disease. So, keeping previous patients’ profile seems effective for diagnosis and treatment of present patients. Use of this memory is latent in synthetic neuro-fuzzy algorithm. P...

متن کامل

Prediction of Thermal performance nanofluid Al2O3 by Artificial Neural Network and Adaptive Neuro-Fuzzy Inference Systemt

In recent years, the use of modeling methods that directly utilize empirical data is increasing due to the high accuracy in predicting the results of the process, rather than statistical methods. In this paper, the ability of Artificial Neural Network (ANN) and Adaptive Fuzzy-Neural Inference System (ANFIS) models in the prediction of the thermal performance of Al2O3 nanofluid that is measured ...

متن کامل

Effective Feature Selection for Pre-Cancerous Cervix Lesions Using Artificial Neural Networks

Since most common form of cervical cancer starts with pre-cancerous changes, a flawless detection of these changes becomes an important issue to prevent and treat the cervix cancer. There are 2 ways to stop this disease from developing. One way is to find and treat pre-cancers before they become true cancers, and the other is to prevent the pre-cancers in the first place. The presented approach...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Clinical cancer research : an official journal of the American Association for Cancer Research

دوره 9 11  شماره 

صفحات  -

تاریخ انتشار 2003